240 research outputs found

    Plantas transgénicas con alto rendimiento en peso seco y almidón cuyos órganos de reserva presentan elevada textura, elevado contenido en almidón y elevado rendimiento en peso seco

    Get PDF
    Plantas transgénicas con alto rendimiento en peso seco y almidón cuyos órganos de reserva presentan elevada textura, elevado contenido en almidón y elevado rendimiento en peso seco. La presente invención proporciona plantas transgénicas con alto rendimiento en peso seco y almidón cuyos órganos de reserva presentan elevada textura, elevado contenido en almidón y elevado rendimiento en peso seco.Peer reviewedUniversidad Pública de Navarra OTRI, Consejo Superior de Investigaciones Científicas (España)B1 Patente sin examen previ

    Enhanced yield of pepper plants promoted by soil application of volatiles from cell-free fungal culture filtrates is associated with activation of the beneficial soil microbiota

    Get PDF
    Plants communicate with microorganisms by exchanging chemical signals throughout the phytosphere. Such interactions are important not only for plant productivity and fitness, but also for terrestrial ecosystem functioning. It is known that beneficial microorganisms emit diffusible substances including volatile organic compounds (VOCs) that promote growth. Consistently, soil application of cell-free culture filtrates (CF) of beneficial soil and plant-associated microorganisms enhances plant growth and yield. However, how this treatment acts in plants and whether it alters the resident soil microbiota, are largely unknown. In this work we characterized the responses of pepper (Capsicum annuum L.) plants cultured under both greenhouse and open field conditions and of soil microbiota to soil application of CFs of beneficial and phytopathogenic fungi. To evaluate the contribution of VOCs occurring in the CFs to these responses, we characterized the responses of plants and of soil microbiota to application of distillates (DE) of the fungal CFs. CFs and their respective DEs contained the same potentially biogenic VOCs, and application of these extracts enhanced root growth and fruit yield, and altered the nutritional characteristics of fruits. High-throughput amplicon sequencing of bacterial 16S and fungal ITS rRNA genes of the soil microbiota revealed that the CF and DE treatments altered the microbial community compositions, and led to strong enrichment of the populations of the same beneficial bacterial and fungal taxa. Our findings show that CFs of both beneficial and phytopathogenic fungi can be used as biostimulants, and provide evidence that VOCs occurring in the fungal CFs act as mediators of the plants’ responses to soil application of fungal CFs through stimulation of the beneficial soil microbiota.This work was supported by the Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (Spain) (grants BIO2013-49125-C2-1-P, BIO2016-78747-P, and PID2019-104685GB-100), the Government of Navarra (refs. P1044 AGROESTI, P1004 PROMEBIO, and P1046 MICROBIOME), and the project “Plants as a tool for sustainable global development” (registration number: CZ.02.1.01/0.0/0.0/16_019/0000827) within the program Research, Development and Education (OP RDE)

    Compuestos útiles para el tratamiento de infecciones bacterianas, composiciones farmaceúticas que los contienen, procedimiento de identificación de los mismos y sus aplicaciones

    Get PDF
    La presente invención describe una serie de compuestos útiles para reducir o anular procesos determinantes de la patogenicidad y virulencia bacterianas y de la adherencia bacteriana a superficies inertes o células tales como la producción de adhesinas, la motilidad flagelar y la formación de EPSs y biofilms bacterianos. Estos compuestos pueden usarse para la elaboración de composiciones farmacéuticas antibacterianas o de composiciones antisépticas para el tratamiento de un amplio abanico de infecciones bacterianas, como por ejemplo, E. coli, S. typhi, S. dysenteteriae, V. chlolerae, P. aeruginosa, H. pylori, L. monocytogenes, C. difficile y S. pyogenes. Además, se describe un procedimiento para la identificación de dichos compuestosPeer reviewedConsejo Superior de Investigaciones Científicas, Universidad Pública de NavarraA2 Solicitud de patente sin informe sobre el estado de la técnic

    HPLC-MS/MS Analyses Show That the Near-Starchless aps1 and pgm Leaves Accumulate Wild Type Levels of ADPglucose: Further Evidence for the Occurrence of Important ADPglucose Biosynthetic Pathway(s) Alternative to the pPGI-pPGM-AGP Pathway

    Get PDF
    In leaves, it is widely assumed that starch is the end-product of a metabolic pathway exclusively taking place in the chloroplast that (a) involves plastidic phosphoglucomutase (pPGM), ADPglucose (ADPG) pyrophosphorylase (AGP) and starch synthase (SS), and (b) is linked to the Calvin-Benson cycle by means of the plastidic phosphoglucose isomerase (pPGI). This view also implies that AGP is the sole enzyme producing the starch precursor molecule, ADPG. However, mounting evidence has been compiled pointing to the occurrence of important sources, other than the pPGI-pPGM-AGP pathway, of ADPG. To further explore this possibility, in this work two independent laboratories have carried out HPLC-MS/MS analyses of ADPG content in leaves of the near-starchless pgm and aps1 mutants impaired in pPGM and AGP, respectively, and in leaves of double aps1/pgm mutants grown under two different culture conditions. We also measured the ADPG content in wild type (WT) and aps1 leaves expressing in the plastid two different ADPG cleaving enzymes, and in aps1 leaves expressing in the plastid GlgC, a bacterial AGP. Furthermore, we measured the ADPG content in ss3/ss4/aps1 mutants impaired in starch granule initiation and chloroplastic ADPG synthesis. We found that, irrespective of their starch contents, pgm and aps1 leaves, WT and aps1 leaves expressing in the plastid ADPG cleaving enzymes, and aps1 leaves expressing in the plastid GlgC accumulate WT ADPG content. In clear contrast, ss3/ss4/aps1 leaves accumulated ca. 300 fold-more ADPG than WT leaves. The overall data showed that, in Arabidopsis leaves, (a) there are important ADPG biosynthetic pathways, other than the pPGI-pPGM-AGP pathway, (b) pPGM and AGP are not major determinants of intracellular ADPG content, and (c) the contribution of the chloroplastic ADPG pool to the total ADPG pool is low.This research was partially supported by the grants [BIO2010-18239] from the Comisión Interministerial de Ciencia y Tecnología and Fondo Europeo de Desarrollo Regional (Spain) and [IIM010491.RI1] from the Government of Navarra, and by Iden Biotechnology. This research was also supported by Scientific Research on Innovative Areas [22114507] and Grants-in-Aid for Scientific Research (B) [22380186] from the Ministry of Education, Culture, Sports, Science and Technology, Japan.Peer Reviewe

    Unraveling the role of transient starch in the response of Arabidopsis to elevated CO2 under long-day conditions

    Get PDF
    Previous studies on Arabidopsis under long-term exposure to elevated CO2 have been conducted using starch synthesis and breakdown mutants cultured under short day conditions. These studies showed that starch synthesis can ameliorate the photosynthetic reduction caused by soluble sugar-mediated feedback regulation. In this work we characterized the effect of long-term exposure to elevated CO2 (800 ppm) on growth, photosynthesis and content of primary photosynthates in long-day grown wild type plants as well as the near starch-less (aps1) and the starch-excess (gwd) mutants. Notably, elevated CO2 promoted growth of both wild type and aps1 plants but had no effect on gwd plants. Growth promotion by elevated CO2 was accompanied by an increased net photosynthesis in WT and aps1 plants. However, the plants with the highest starch content (wild type at elevated CO2, gwd at ambient CO2, and gwd at elevated CO2) were the ones that suffered decreased in in vivo maximum carboxylation rate of Rubisco, and therefore, photosynthetic down-regulation. Further, the photosynthetic rates of wild type at elevated CO2 and gwd at elevated CO2 were acclimated to elevated CO2. Notably, elevated CO2 promoted the accumulation of stress-responsive and senescence-associated amino acid markers in gwd plants. The results presented in this work provide evidence that under long-day conditions, temporary storage of overflow photosynthate as starch negatively affect Rubisco performance. These data are consistent with earlier hypothesis that photosynthetic acclimation can be caused by accelerated senescence and hindrance of CO2 diffusion to the stroma due to accumulation of large starch granules

    Characterization of multiple SPS knockout mutants reveals redundant functions of the four Arabidopsis sucrose phosphate synthase isoforms in plant viability, and strongly indicates that enhanced respiration and accelerated starch turnover can alleviate the blockage of sucrose biosynthesis

    Get PDF
    We characterized multiple knock-out mutants of the four Arabidopsis sucrose phosphate synthase (SPSA1, SPSA2, SPSB and SPSC) isoforms. Despite their reduced SPS activity, spsa1/spsa2, spsa1/spsb, spsa2/spsb, spsa2/spsc, spsb/spsc, spsa1/spsa2/spsb and spsa2/spsb/spsc mutants displayed wild type (WT) vegetative and reproductive morphology, and showed WT photosynthetic capacity and respiration. In contrast, growth of rosettes, flowers and siliques of the spsa1/spsc and spsa1/spsa2/spsc mutants was reduced compared with WT plants. Furthermore, these plants displayed a high dark respiration phenotype. spsa1/spsb/spsc and spsa1/spsa2/spsb/spsc seeds poorly germinated and produced aberrant and sterile plants. Leaves of all viable sps mutants, except spsa1/spsc and spsa1/spsa2/spsc, accumulated WT levels of nonstructural carbohydrates. spsa1/spsc leaves possessed high levels of metabolic intermediates and activities of enzymes of the glycolytic and tricarboxylic acid cycle pathways, and accumulated high levels of metabolic intermediates of the nocturnal starch-to-sucrose conversion process, even under continuous light conditions. Results presented in this work show that SPS is essential for plant viability, reveal redundant functions of the four SPS isoforms in processes that are important for plant growth and nonstructural carbohydrate metabolism, and strongly indicate that accelerated starch turnover and enhanced respiration can alleviate the blockage of sucrose biosynthesis in spsa1/spsc leaves.This work was partially supported by the Comisión Interministerial de Ciencia y Tecnología and Fondo Europeo de Desarrollo Regional (Spain) [grant numbers BIO2010-18239, BIO2013-49125-C2-1-P, BIO2008-02292 and BIO2011-28847-C02-02]. A.M.S-L. acknowledges a predoctoral fellowship from the Spanish Ministry of Science and Innovation. M.B. acknowledges a post-doctoral fellowship from the Public University of Navarra.Peer Reviewe
    corecore